Login

Your Name:(required)

Your Password:(required)

Join Us

Your Name:(required)

Your Email:(required)

Your Message :

0/2000

Your Position: Home - Chemicals - How Does Rutile Type Titanium Dioxide Work?

How Does Rutile Type Titanium Dioxide Work?

Titanium dioxide

Chemical compound

Read more

Chemical compound

Titanium dioxide, also known as titanium(IV) oxide or titania , is the inorganic compound derived from titanium with the chemical formula TiO
2. When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI .[4] It is a white solid that is insoluble in water, although mineral forms can appear black. As a pigment, it has a wide range of applications, including paint, sunscreen, and food coloring. When used as a food coloring, it has E number E171. World production in exceeded 9 million tonnes.[5][6][7] It has been estimated that titanium dioxide is used in two-thirds of all pigments, and pigments based on the oxide have been valued at a price of $13.2 billion.[8]

Structure

[

edit

]

In all three of its main dioxides, titanium exhibits octahedral geometry, being bonded to six oxide anions. The oxides in turn are bonded to three Ti centers. The overall crystal structures of rutile and anatase are tetragonal in symmetry whereas brookite is orthorhombic. The oxygen substructures are all slight distortions of close packing: in rutile, the oxide anions are arranged in distorted hexagonal close-packing, whereas they are close to cubic close-packing in anatase and to "double hexagonal close-packing" for brookite. The rutile structure is widespread for other metal dioxides and difluorides, e.g. RuO2 and ZnF2.

Molten titanium dioxide has a local structure in which each Ti is coordinated to, on average, about 5 oxygen atoms.[9] This is distinct from the crystalline forms in which Ti coordinates to 6 oxygen atoms.

Structure of anatase. Together with rutile and brookite, one of the three major polymorphs of TiO2.

Synthetic and geologic occurrence

[

edit

]

Synthetic TiO2 is mainly produced from the mineral ilmenite. Rutile, and anatase, naturally occurring TiO2, occur widely also, e.g. rutile as a 'heavy mineral' in beach sand. Leucoxene, fine-grained anatase formed by natural alteration of ilmenite, is yet another ore. Star sapphires and rubies get their asterism from oriented inclusions of rutile needles.[10]

Mineralogy and uncommon polymorphs

[

edit

]

Titanium dioxide occurs in nature as the minerals rutile and anatase. Additionally two high-pressure forms are known minerals: a monoclinic baddeleyite-like form known as akaogiite, and the other has a slight monoclinic distortion of the orthorhombic α-PbO2 structure and is known as riesite. Both of which can be found at the Ries crater in Bavaria.[11][12][13] It is mainly sourced from ilmenite, which is the most widespread titanium dioxide-bearing ore around the world. Rutile is the next most abundant and contains around 98% titanium dioxide in the ore. The metastable anatase and brookite phases convert irreversibly to the equilibrium rutile phase upon heating above temperatures in the range 600&#;800 °C (1,110&#;1,470 °F).[14]

Titanium dioxide has twelve known polymorphs &#; in addition to rutile, anatase, brookite, akaogiite and riesite, three metastable phases can be produced synthetically (monoclinic, tetragonal, and orthorhombic ramsdellite-like), and four high-pressure forms (α-PbO2-like, cotunnite-like, orthorhombic OI, and cubic phases) also exist:

The cotunnite-type phase was claimed to be the hardest known oxide with the Vickers hardness of 38 GPa and the bulk modulus of 431 GPa (i.e. close to diamond's value of 446 GPa) at atmospheric pressure.[22] However, later studies came to different conclusions with much lower values for both the hardness (7&#;20 GPa, which makes it softer than common oxides like corundum Al2O3 and rutile TiO2)[23] and bulk modulus (~300 GPa).[24][25]

Titanium dioxide (B) is found as a mineral in magmatic rocks and hydrothermal veins, as well as weathering rims on perovskite. TiO2 also forms lamellae in other minerals.[26]

Production

[

edit

]

Industrial key players in the production of titanium dioxide -

The largest TiO
2 pigment processors are Chemours, Venator, Kronos [de], and Tronox.[27][28] Major paint and coating company end users for pigment grade titanium dioxide include Akzo Nobel, PPG Industries, Sherwin Williams, BASF, Kansai Paints and Valspar.[29] Global TiO
2 pigment demand for was 5.3 Mt with annual growth expected to be about 3&#;4%.[30]

Evolution of the global production of titanium dioxide according to process

The production method depends on the feedstock. In addition to ores, other feedstocks include upgraded slag. Both the chloride process and the sulfate process (both described below) produce titanium dioxide pigment in the rutile crystal form, but the sulfate process can be adjusted to produce the anatase form. Anatase, being softer, is used in fiber and paper applications. The sulfate process is run as a batch process; the chloride process is run as a continuous process.[31]

Chloride process

[

edit

]

In chloride process, the ore is treated with chlorine and carbon to give titanium tetrachloride, a volatile liquid that is further purified by distillation. The TiCl4 is treated with oxygen to regenerate chlorine and produce the titanium dioxide.

Sulfate process

[

edit

]

In the sulfate process, ilmenite is treated with sulfuric acid to extract iron(II) sulfate pentahydrate. This process requires concentrated ilmenite (45&#;60% TiO2) or pretreated feedstocks as a suitable source of titanium.[32] The resulting synthetic rutile is further processed according to the specifications of the end user, i.e. pigment grade or otherwise.[33]

Examples of plants using the sulfate process are the Sorel-Tracy plant of QIT-Fer et Titane and the Eramet Titanium & Iron smelter in Tyssedal Norway.[34]

Becher process

[

edit

]

The Becher process is another method for the production of synthetic rutile from ilmenite. It first oxidizes the ilmenite as a means to separate the iron component.

Specialized methods

[

edit

]

For specialty applications, TiO2 films are prepared by various specialized chemistries.[35] Sol-gel routes involve the hydrolysis of titanium alkoxides such as titanium ethoxide:

Ti(OEt)4 + 2 H2O &#; TiO2 + 4 EtOH

A related approach that also relies on molecular precursors involves chemical vapor deposition. In this method, the alkoxide is volatilized and then decomposed on contact with a hot surface:

Ti(OEt)4 &#; TiO2 + 2 Et2O

Applications

[

edit

]

Pigment

[

edit

]

First mass-produced in ,[36] titanium dioxide is the most widely used white pigment because of its brightness and very high refractive index, in which it is surpassed only by a few other materials (see list of indices of refraction). Titanium dioxide crystal size is ideally around 220 nm (measured by electron microscope) to optimize the maximum reflection of visible light. However, abnormal grain growth is often observed in titanium dioxide, particularly in its rutile phase.[37] The occurrence of abnormal grain growth brings about a deviation of a small number of crystallites from the mean crystal size and modifies the physical behaviour of TiO2. The optical properties of the finished pigment are highly sensitive to purity. As little as a few parts per million (ppm) of certain metals (Cr, V, Cu, Fe, Nb) can disturb the crystal lattice so much that the effect can be detected in quality control.[38] Approximately 4.6 million tons of pigmentary TiO2 are used annually worldwide, and this number is expected to increase as use continues to rise.[39]

TiO2 is also an effective opacifier in powder form, where it is employed as a pigment to provide whiteness and opacity to products such as paints, coatings, plastics, papers, inks, foods, supplements, medicines (i.e. pills and tablets), and most toothpastes; in it was present in two-thirds of toothpastes on the French market.[40] In food, it is commonly found in products like ice creams, chocolates, all types of candy, creamers, desserts, marshmallows, chewing gum, pastries, spreads, dressings, cakes, and many other foods.[41] In paint, it is often referred to offhandedly as "brilliant white", "the perfect white", "the whitest white", or other similar terms. Opacity is improved by optimal sizing of the titanium dioxide particles.

Thin films

[

edit

]

When deposited as a thin film, its refractive index and colour make it an excellent reflective optical coating for dielectric mirrors; it is also used in generating decorative thin films such as found in "mystic fire topaz".

Some grades of modified titanium based pigments as used in sparkly paints, plastics, finishes and cosmetics &#; these are man-made pigments whose particles have two or more layers of various oxides &#; often titanium dioxide, iron oxide or alumina &#; in order to have glittering, iridescent and or pearlescent effects similar to crushed mica or guanine-based products. In addition to these effects a limited colour change is possible in certain formulations depending on how and at which angle the finished product is illuminated and the thickness of the oxide layer in the pigment particle; one or more colours appear by reflection while the other tones appear due to interference of the transparent titanium dioxide layers.[42] In some products, the layer of titanium dioxide is grown in conjunction with iron oxide by calcination of titanium salts (sulfates, chlorates) around 800 °C[43] One example of a pearlescent pigment is Iriodin, based on mica coated with titanium dioxide or iron (III) oxide.[44]

The iridescent effect in these titanium oxide particles is unlike the opaque effect obtained with usual ground titanium oxide pigment obtained by mining, in which case only a certain diameter of the particle is considered and the effect is due only to scattering.

Sunscreen and UV blocking pigments

[

edit

]

In cosmetic and skin care products, titanium dioxide is used as a pigment, sunscreen and a thickener. As a sunscreen, ultrafine TiO2 is used, which is notable in that combined with ultrafine zinc oxide, it is considered to be an effective sunscreen that lowers the incidence of sun burns and minimizes the premature photoaging, photocarcinogenesis and immunosuppression associated with long term excess sun exposure.[45] Sometimes these UV blockers are combined with iron oxide pigments in sunscreen to increase visible light protection.[46]

Titanium dioxide and zinc oxide are generally considered to be less harmful to coral reefs than sunscreens that include chemicals such as oxybenzone, octocrylene and octinoxate.[47]

Nanosized titanium dioxide is found in the majority of physical sunscreens because of its strong UV light absorbing capabilities and its resistance to discolouration under ultraviolet light. This advantage enhances its stability and ability to protect the skin from ultraviolet light. Nano-scaled (particle size of 20&#;40 nm)[48] titanium dioxide particles are primarily used in sunscreen lotion because they scatter visible light much less than titanium dioxide pigments, and can give UV protection.[39] Sunscreens designed for infants or people with sensitive skin are often based on titanium dioxide and/or zinc oxide, as these mineral UV blockers are believed to cause less skin irritation than other UV absorbing chemicals. Nano-TiO2, which blocks both UV-A and UV-B radiation, is used in sunscreens and other cosmetic products.

The EU Scientific Committee on Consumer Safety considered nano sized titanium dioxide to be safe for skin applications, in concentrations of up to 25 percent based on animal testing. [49] The risk assessment of different titanium dioxide nanomaterials in sunscreen is currently evolving since nano-sized TiO2 is different from the well-known micronized form.[50] The rutile form is generally used in cosmetic and sunscreen products due to it not possessing any observed ability to damage the skin under normal conditions[51] and having a higher UV absorption.[52] In Scientific Committee on Consumer Safety (SCCS) tests concluded that the use of nano titanium dioxide (95&#;100% rutile, &#;5% anatase) as a UV filter can be considered to not pose any risk of adverse effects in humans post-application on healthy skin,[53] except in the case the application method would lead to substantial risk of inhalation (ie; powder or spray formulations). This safety opinion applied to nano TiO2 in concentrations of up to 25%.[54]

Initial studies indicated that nano-TiO2 particles could penetrate the skin, causing concern over its use. These studies were later refuted, when it was discovered that the testing methodology couldn't differentiate between penetrated particles and particles simply trapped in hair follicles and that having a diseased or physically damaged dermis could be the true cause of insufficient barrier protection.[50]

SCCS research found that when nanoparticles had certain photostable coatings (e.g., alumina, silica, cetyl phosphate, triethoxycaprylylsilane, manganese dioxide), the photocatalytic activity was attenuated and no notable skin penetration was observed; the sunscreen in this research was applied at amounts of 10 mg/cm2 for exposure periods of 24 hours.[54] Coating TiO2 with alumina, silica, zircon or various polymers can minimize avobenzone degradation[55] and enhance UV absorption by adding an additional light diffraction mechanism.[52]

TiO
2 is used extensively in plastics and other applications as a white pigment or an opacifier and for its UV resistant properties where the powder disperses light &#; unlike organic UV absorbers &#; and reduces UV damage, due mostly to the particle's high refractive index.[56]

Other uses of titanium dioxide

[

edit

]

In ceramic glazes, titanium dioxide acts as an opacifier and seeds crystal formation.

It is used as a tattoo pigment and in styptic pencils. Titanium dioxide is produced in varying particle sizes which are both oil and water dispersible, and in certain grades for the cosmetic industry. It is also a common ingredient in toothpaste.

The exterior of the Saturn V rocket was painted with titanium dioxide; this later allowed astronomers to determine that J002E3 was likely the S-IVB stage from Apollo 12 and not an asteroid.[57]

Research

[

edit

]

Patenting activities

[

edit

]

Relevant patent families describing titanium dioxide production from ilmenite, &#;. Academic and public institutions having significant patent activity in titanium dioxide production.

Between and , there were 459 patent families that describe the production of titanium dioxide from ilmenite. The majority of these patents describe pre-treatment processes, such as using smelting and magnetic separation to increase titanium concentration in low-grade ores, leading to titanium concentrates or slags. Other patents describe processes to obtain titanium dioxide, either by a direct hydrometallurgical process or through the main industrial production processes, the sulfate process and the chloride process.[58] The sulfate process represents 40% of the world&#;s titanium dioxide production and is protected in 23% of patent families. The chloride process is only mentioned in 8% of patent families, although it provides 60% of the worldwide industrial production of titanium dioxide.[58]

Key contributors to patents on the production of titanium dioxide are companies from China, Australia and the United States, reflecting the major contribution of these countries to industrial production. Chinese companies Pangang and Lomon Billions Groups hold major patent portfolios.[58]

Photocatalyst

[

edit

]

Nanosized titanium dioxide, particularly in the anatase form, exhibits photocatalytic activity under ultraviolet (UV) irradiation. This photoactivity is reportedly most pronounced at the {001} planes of anatase,[59][60] although the {101} planes are thermodynamically more stable and thus more prominent in most synthesised and natural anatase,[61] as evident by the often observed tetragonal dipyramidal growth habit. Interfaces between rutile and anatase are further considered to improve photocatalytic activity by facilitating charge carrier separation and as a result, biphasic titanium dioxide is often considered to possess enhanced functionality as a photocatalyst.[62] It has been reported that titanium dioxide, when doped with nitrogen ions or doped with metal oxide like tungsten trioxide, exhibits excitation also under visible light.[63] The strong oxidative potential of the positive holes oxidizes water to create hydroxyl radicals. It can also oxidize oxygen or organic materials directly. Hence, in addition to its use as a pigment, titanium dioxide can be added to paints, cements, windows, tiles, or other products for its sterilizing, deodorizing, and anti-fouling properties, and is used as a hydrolysis catalyst. It is also used in dye-sensitized solar cells, which are a type of chemical solar cell (also known as a Graetzel cell).

Additional reading:
What is 2 Bromo 1 phenyl 1 pentanone used for?
Is 110-63-4 Safe to Use? Experts Weigh In
4 Tips for Choosing Cas:6642-31-5 White Powder

Chuangge contains other products and information you need, so please check it out.

The photocatalytic properties of nanosized titanium dioxide were discovered by Akira Fujishima in [64] and published in .[65] The process on the surface of the titanium dioxide was called the Honda-Fujishima effect [ja].[64] In thin film and nanoparticle form, titanium dioxide has the potential for use in energy production: As a photocatalyst, it can break water into hydrogen and oxygen. With the hydrogen collected, it could be used as a fuel. The efficiency of this process can be greatly improved by doping the oxide with carbon.[66] Further efficiency and durability has been obtained by introducing disorder to the lattice structure of the surface layer of titanium dioxide nanocrystals, permitting infrared absorption.[67] Visible-light-active nanosized anatase and rutile has been developed for photocatalytic applications.[68][69]

In Fujishima and his group discovered the superhydrophilicity phenomenon for titanium dioxide coated glass exposed to sun light.[64] This resulted in the development of self-cleaning glass and anti-fogging coatings.

Nanosized TiO2 incorporated into outdoor building materials, such as paving stones in noxer blocks[70] or paints, could reduce concentrations of airborne pollutants such as volatile organic compounds and nitrogen oxides.[71] A TiO2-containing cement has been produced.[72]

Using TiO2 as a photocatalyst, attempts have been made to mineralize pollutants (to convert into CO2 and H2O) in waste water.[73][74][75] The photocatalytic destruction of organic matter could also be exploited in coatings with antimicrobial applications.[76]

Hydroxyl radical formation

[

edit

]

Although nanosized anatase TiO2 does not absorb visible light, it does strongly absorb ultraviolet (UV) radiation (hv), leading to the formation of hydroxyl radicals.[77] This occurs when photo-induced valence bond holes (h+vb) are trapped at the surface of TiO2 leading to the formation of trapped holes (h+tr) that cannot oxidize water.[78]

TiO2 + hv &#; e&#; + h+vb
h+vb &#; h+tr
O2 + e&#; &#; O2&#;&#;
O2&#;&#; + O2&#;&#;+ 2

&#;

H+ &#; H2O2 + O2
O2&#;&#; + h+vb &#; O2
O2&#;&#; + h+tr &#; O2

&#;

OH&#; + h+vb &#; HO&#;
e&#; + h+tr &#; recombination
Note: Wavelength (λ)= 387 nm[78] This reaction has been found to mineralize and decompose undesirable compounds in the environment, specifically the air and in wastewater.[78]Synthetic single crystals of TiO2, ca. 2&#;3 mm in size, cut from a larger plate

Nanotubes

[

edit

]

Titanium oxide nanotubes, SEM image Nanotubes of titanium dioxide (TiO2-Nt) obtained by electrochemical synthesis. The SEM image shows an array of vertical self-ordered TiO2-Nt with closed bottom ends of tubes.

Anatase can be converted into non-carbon nanotubes and nanowires.[79] Hollow TiO2 nanofibers can be also prepared by coating carbon nanofibers by first applying titanium butoxide.[80]

SEM (top) and TEM (bottom) images of chiral TiO2 nanofibers[80]

Health and safety

[

edit

]

As of , titanium dioxide has been regarded as "completely nontoxic".[4] Widely-occurring minerals and even gemstones are composed of TiO2. All natural titanium, comprising more than 0.5% of the Earth's crust, exists as oxides. Although no evidence points to acute toxicity, recurring concerns have been expressed about nanophase forms of these materials. Studies of workers with high exposure to TiO2 particles indicate that even at high exposure there is no adverse effect to human health.[81]

The European Union removed the authorization to use titanium dioxide (E 171) in foods, effective 7 February , with a six months grace period.[82]

Titanium dioxide dust, when inhaled, has been classified by the International Agency for Research on Cancer (IARC) as an IARC Group 2B carcinogen, meaning it is possibly carcinogenic to humans.[83][84] The US National Institute for Occupational Safety and Health recommends two separate exposure limits. NIOSH recommends that fine TiO
2 particles be set at an exposure limit of 2.4 mg/m3, while ultrafine TiO
2 be set at an exposure limit of 0.3 mg/m3, as time-weighted average concentrations up to 10 hours a day for a 40-hour work week.[85]

As of May , following the European Union ban, the U.S. states California and New York were considering banning the use of titanium dioxide in foods.[86]

Environmental waste introduction

[

edit

]

Titanium dioxide (TiO&#;) is mostly introduced into the environment as nanoparticles via wastewater treatment plants.[87] Cosmetic pigments including titanium dioxide enter the wastewater when the product is washed off into sinks after cosmetic use. Once in the sewage treatment plants, pigments separate into sewage sludge which can then be released into the soil when injected into the soil or distributed on its surface. 99% of these nanoparticles wind up on land rather than in aquatic environments due to their retention in sewage sludge.[87] In the environment, titanium dioxide nanoparticles have low to negligible solubility and have been shown to be stable once particle aggregates are formed in soil and water surroundings.[87] In the process of dissolution, water-soluble ions typically dissociate from the nanoparticle into solution when thermodynamically unstable. TiO2 dissolution increases when there are higher levels of dissolved organic matter and clay in the soil. However, aggregation is promoted by pH at the isoelectric point of TiO2 (pH= 5.8) which renders it neutral and solution ion concentrations above 4.5 mM.[88][89]

National policies on food additive use

[

edit

]

TiO2 whitener in food was banned in France from , due to uncertainty about safe quantities for human consumption.[90]

In , the European Food Safety Authority (EFSA) ruled that as a consequence of new understandings of nanoparticles, titanium dioxide could "no longer be considered safe as a food additive", and the EU health commissioner announced plans to ban its use across the EU, with discussions beginning in June . EFSA concluded that genotoxicity&#;which could lead to carcinogenic effects&#;could not be ruled out, and that a "safe level for daily intake of the food additive could not be established".[91] In , the UK Food Standards Agency and Food Standards Scotland announced their disagreement with the EFSA ruling, and did not follow the EU in banning titanium dioxide as a food additive.[92] Health Canada similarly reviewed the available evidence in and decided not to change their position on titanium dioxide as a food additive.[93]

As of , the Food and Drug Administration (FDA) in the United States permits titanium dioxide as a food additive. It is commonly used to increase whiteness and opacity in dairy products (lowfat milk, cream, ice cream, yogurt, etc), candies, frostings, fillings, and many other foods. The FDA permits the product's ingredients list to identify titanium dioxide as "color added" or "artificial colors" and does not require that titanium dioxide be explicitly named[94][95][96] despite growing scientific concerns.[97] In , the Consumer Healthcare Products Association, a manufacturer's trade group, defended the substance as safe at certain limits while allowing that additional studies could provide further insight, saying an immediate ban would be a "knee-jerk" reaction.[98]

Research as an ingestible nanomaterial

[

edit

]

Due to the potential that long-term ingestion of titanium dioxide may be toxic, particularly to cells and functions of the gastrointestinal tract, preliminary research as of was assessing its possible role in disease development, such as inflammatory bowel disease and colorectal cancer.[99]

Culture and society

[

edit

]

Companies such as Dunkin' Donuts dropped titanium dioxide from their merchandise in after public pressure.[100] Andrew Maynard, director of Risk Science Center at the University of Michigan, rejected the supposed danger from use of titanium dioxide in food. He says that the titanium dioxide used by Dunkin' Brands and many other food producers is not a new material, and it is not a nanomaterial either. Nanoparticles are typically smaller than 100 nanometres in diameter, yet most of the particles in food-grade titanium dioxide are much larger.[101] Still, size distribution analyses showed that batches of food-grade TiO&#; always include a nano-sized fraction as inevitable byproduct of the manufacturing processes.[102]

See also

[

edit

]

Sources

[

edit

]

 This article incorporates text from a free content work. Licensed under CC-BY. Text taken from Production of titanium and titanium dioxide from ilmenite and related applications&#;, WIPO.

References

[

edit

]

Rutile

Monthly Tech-Tip from Tony Hansen SignUp

No tracking! No ads!

Rutile

Description: Iron Titanium Mineral

Notes

Rutile is the mineral name for natural crystals of titanium dioxide. However in nature rutile is always contaminated by other minerals (especially iron but also things like tantalum, niobium, chromium and tin, the analysis provided here is obviously a simplification). In ceramics, the term 'rutile' is generally understood to refer to the brown powder into which these minerals are ground. Industry accepts up to 15% contaminants (below 85% titanium is called ilmenite). Rutile is considered an impure form of titanium whereas ilmenite is considered as FeTiO3. Grades of rutile are sometimes named after one of the impurities. Rutile is employed in many industries, ceramic uses are minor in comparison. There are large reserves of rutile in the world so supply shortages are related to other factors. Manufacturers often blend ores from different deposits, at times from different parts of the world. And they improve the TiO2 content by furnace-processing. Large users of rutile will often track batch numbers and test when the number changes. A situation can sometimes be dealt with by adjusting the amount of rutile in the recipe, firing differently or milling it. In more serious cases additions of iron or pure titanium might be needed.

Rutile is available in light tan calcined ceramic grade powder (light rutile), darker uncalcined powder (dark rutile), and granular form. Either ceramic grade of powder is normally ground very fine (e.g. 325 mesh). In glazes, it is better to use a calcined grade (since the decomposition of raw rutile during firing could be a source of glaze imperfections like pinholing and bubbles). In our experience the LOI (weight loss on firing) when calcining rutile from our suppliers is less than 1%, so we are getting a calcined material. Milled rutile is normally ground to 200 mesh.

Rutile produces many crystalline, speckling, streaking, and mottling effects in glazes during cooling in the kiln and has been used in all types of colored glazes to enhance the surface character. It is thus highly prized by potters, many attractive variegated glazes are made using it. Many potters would say that their living depends on their rutile supply!

Rutile is very refractory in oxidation, even a mix of 50% borax alumina-free frit like Ferro will not melt it in a crucible. In reduction, the improvement in melting will depend on the amount of iron present.

In ceramic glazes rutile is more often considered a variegator than a colorant. As little as 2% can impart significant effects in stoneware glazes. It is normally used in combination with a wide range of metal oxide and stain colorants to produce surfaces that are much more visually interesting. In glazes with high melt fluidity (e.g. having high boron), large amounts of rutile (e.g. 6-8%) can be quite stunning. The rutile encourages the development of micro-crystals (it is crystalline itself) and rivulets. Since rutile contains significant iron its use in combination with other colorants will often muddy the color that they would otherwise have or alter it if they are sensitive to the presence of iron. Even though rutile generally makes up less than 5% of stoneware glazes that employ it, they are often called 'rutile glazes' in recognition of its dramatic contribution.

Excessive rutile in a glaze can produce surface imperfections. In addition, when rutile is employed in higher percentages (e.g. 5%+) a given percentage might work well whereas a slightly higher amount can look drastically different. Such situations are vulnerable to chemistry changes in the supply of rutile. Thus people will often do a line blend trying a range of percentages to determine an optimal amount.

In glazes, rutile can be quite sensitive to the presence of opacifiers. While an unopacified glaze might appear quite stunning, the addition of a zircon opacifier will usually drastically alter its appearance and interest because the variegation imparted is dependent on the glaze having depth and transparency or translucency. Strangely rutile and tin, another opacifier, can produce some very interesting reactions and it is quite common to see tin in amounts of up to 4% in rutile glazes. In these cases, the tin appears to react in the crystal formation rather than opacify the glaze.

Pure rutile powder, although its color makes it appear to be a crude ground mineral, normally contains 95%+ titanium dioxide. However, this does not mean that you can use a 95% titanium:5% iron mix and get the same result in a ceramic glaze (obviously line blending would be needed to match the amount of iron). The mineralogy and significant other impurities in rutile are a major factor in the way it acts in glazes (not easily duplicated using a blend of other things). Sometimes the special effects that rutile produces in glazes are also partly a product of a coarser grade (larger particle size). These likewise cannot be easily duplicated by more refined materials. Unfortunately, the trend at some mining operations (at least in Australia) is to fine grind the rutile on-site, making it more difficult for ceramic operations to obtain the coarser grades.

Although rutile will normally stain a glaze brown or yellow, its crystallization effects can significantly lighten the color of iron glazes. Higher amounts of rutile in stoneware glazes will often contribute glaze imperfections.

Granular rutile is sometimes used in bodies and glazes to impart fired speckle.

Rutile is used for special effects in leaded glazes and can form up to 15% of the recipe.

Rutile can be used as a tone modifier to soften the more potent colorants.

Related Information

An original container bag of ceramic rutile


This bag is very small, this material is very dense and heavy. The primary use of this material is obvious: For making welding rods. We can thus assume it will continue to be abundantly available for ceramics. Notice the bag bottom is marked "Ceramic Rutile" (with a batch number). Why would a product intended for making welding rods be used in ceramics? The answer is very interesting.


Rutilite Slices


Rutile Crystals

Rutilated quartz


How do metal oxides compare in their degrees of melting?


These metal oxides have been mixed with 50% Ferro frit and fired to cone 6 oxidation. Chrome and rutile have not melted, copper and cobalt are extremely active melters, frothing and boiling. Cobalt and copper have crystallized during cooling. Manganese has formed an iridescent glass.

Making your own ceramic rutile


Left: GA6-C rutile blue glaze on a brown stoneware. The 4% ceramic rutile powder gives the blue variegated effect. Right: We ball-milled our granular rutile and then screened it down to 325 mesh and put that into the same glaze. The results are the same. So if any of your rutile glazes ever lose this effect with a new supply of the material the cause could be that it has not been milled sufficiently fine. Finer rutile powders are browner in color.

The rutile mechanism in glazes


2, 3, 4, 5% rutile added to an 80:20 mix of Alberta Slip:Frit at cone 6. This variegating mechanism of rutile is well-known among potters. Rutile can be added to many glazes to variegate existing color and opacification. If more rutile is added the surface turns an ugly yellow in a mass of titanium crystals.

4% rutile in a low temperature transparent glaze


The glaze is G191T (a variation of GQ). Firing was cone 04 drop-and-hold with slow cool. Sometimes a raw colorant is advisable over a ceramic stain. At low temperatures stains are almost universal. But in this case, the orangey-yellow color that rutile produces merits further testing. On the red body (Plainsman L215) the color is barely perceptible, but on the light Buffstone body it is working well. The variations in thickness highlight contours better than what a stain would do.

GC rutile blue on P700 at cone 10R


The clay body is Plainsman P700. This was fired in cone 10R using the C10RPL firing schedule. The outside glaze is GC. The inside glaze is GU.

Titanium instead of rutile for floating blue


Rutile blue glazes are actually titanium blues (because rutile mineral is an impure source of TiO2 and Fe2O3). The iron and titanium in the rutile react to form the floating blue effect. The GA6-C recipe has always relied on a 4% rutile addition. Its GA6-A base recipe contains significant iron (because of the 80% Alberta Slip), so could titanium oxide deliver the same floating blue effect? Yes. These mugs are M390 clay. The top left one is the standard GA6-C (with rutile) fired using the C6DHSC slow-cool firing schedule (the bottom left normal cool PLC6DS schedule produces little color). But the ones on the right switch the 4% rutile for titanium dioxide (the L recipe). The top right was fired using the slow cool, the bottom right was the normal cool schedule. Titanium is a much more consistent and reliable material than rutile. If it can produce an excellent blue color is produced even without a slow cool (lower right) then it is a better long-range choice.

Want more information on Rutile Type Titanium Dioxide? Feel free to contact us.

Links

48

0

Comments

0/2000

All Comments (0)

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name (required)

Your Email (required)

Subject

Your Message (required)

0/2000